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Niche breadth coevolution between biotic partners underpins theories of diversity and co-existence and influences patterns of

disease emergence and transmission in host-parasite systems. Despite these broad implications, we still do not fully understand

how the breadth of parasites’ infectivity evolves, the nature of any associated costs, or the genetic basis of specialization. Here,

we serially passage a granulosis virus on multiple inbred populations of its Plodia interpunctella host to explore the dynamics and

outcomes of specialization. In particular, we collect time series of phenotypic and genetic data to explore the dynamics of host

genotype specialization throughout the course of experimental evolution and examine two fitness components. We find that the

Plodia interpunctella granulosis virus consistently evolves and increases in overall specialization, but that our two fitness compo-

nents evolve independently such that lines can specialize in productivity or infectivity. Furthermore, we find that specialization in

our experiment is a highly polygenic trait best explained by a combination of evolutionary mechanisms. These results are impor-

tant for understanding the evolution of specialization in host-parasite interactions and its broader implications for co-existence,

diversification, and infectious disease management.
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The question of why some species are specialists and others are

generalists has been central to evolutionary biology since its in-

ception (Darwin 1859). This co-existence of strategies is com-

monly explained by there being some cost to generalism such

that specialists are favored under certain ecological conditions

(Futuyma and Moreno 1988) because “jacks-of-all-trades are

the masters of none” (MacArthur 1984). The theory of costly

generalism has been extensively applied in the host-parasite

eco-evolutionary literature to explain parasite niche breadth and

specialization at the levels of both host species and host geno-

type (Regoes et al. 2000; Gandon and Poulin 2004; Osnas and

Dobson 2012). Niche breadth at the level of host species has

important implications for pathogen emergence (Guth et al. 2019)

and species co-existence (Janzen 1970; Connell 1971); while

niche breadth and specialization at the genotype level underpins

the monoculture effect (Elton 1958), local adaptation (Kawecki

and Ebert 2004), and the Red Queen Hypothesis of Sex (Jaenike

1978).

Despite the broad implications of niche breadth evolu-

tion in antagonistic coevolutionary systems, there is still de-

bate about whether costs to niche breadth are, in fact, universal

and what the dominant genetic mechanisms driving such costs

would be (Jaenike 1990; Remold 2012). Several mechanisms for

the evolution of specialization have been proposed. The classic
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trade-off hypothesis expects that increases in fitness on one host

negatively trade-off with fitness on foreign hosts (Levins et al.

1968; Regoes et al. 2000). These strict negative trade-offs are

not universal though, so several additional theories have been

proposed including host specialization due to weakly positive or

neutral genetic correlations leading to asymmetrical fitness gains

(Fry 1996) and host specialization due to the accumulation of

deleterious mutations on alternate hosts (Kawecki 1994; Whit-

lock 1996). The number of genes involved in specialization could

also vary so that it is driven by a few mutations of large effect or

by many mutations of small effect.

Experimental evolution approaches have been used to ex-

plore the evolution of specialism and the nature of costs to gen-

eralism in a wide range of taxa evolving to a variety of selec-

tive environments (Cooper and Lenski 2000; Kassen 2002; Bono

et al. 2017; Visher and Boots 2020). Host genotype specializa-

tion, specifically, has been studied with great success in host-

parasite systems including mice and RNA virus (Kubinak et al.

2012), mosquitos and microsporidia (Legros and Koella 2010),

daphnia and bacteria (Little et al. 2006), protists and bacteria

(Nidelet and Kaltz 2007), C. elegans and bacteria (Schulte et al.

2011), and wheat and fungus (Zhan et al. 2002). Generally, these

studies find that serial passage on a single host genotype increases

fitness on that host genotype while decreasing or at least resulting

in smaller fitness gains on other genotypes.

However, there has been a limited empirical exploration of

the genetic mechanisms of such specialism. Similar work has ex-

plored the genetics of virus specialization to different host cell

lines, finding that specialization was driven by a mix of antago-

nistic pleiotropy and mutation accumulation depending on a lin-

eage’s evolutionary history (Remold et al. 2008), but this inquiry

has not yet been extended to specialization to different host geno-

types. A better understanding of the genetics of specialization is

important because the number of potential mutations involved in

host genotype specialization and the genetic mechanism of such

specialization will affect the evolutionary dynamics of special-

ization and may create divergent predictions for eco-evolutionary

theory (Remold 2012; Visher and Boots 2020).

In this paper, we explore the evolutionary dynamics of host

genotype specialization in the Plodia interpunctella (Hübner) and

Plodia interpunctella granulosis virus (PiGV) laboratory model

system. Plodia interpunctella, the Indian meal moth, is a stored

grain pest that has been extensively used to characterize trade-

offs and test eco-evolutionary dynamics in the lab (Boots and

Mealor 2007; Boots 2011; Bartlett et al. 2020, Bartlett et al.

2018). We experimentally evolve virus populations to determine

whether PiGV evolves to specialize on familiar host genotypes,

collect multiple fitness metrics at multiple time points to ex-

plore the phenotypic dynamics of specialization, and sequence

virus populations at multiple time points to explore the genetic

mechanisms of specialization. We find that serially passaging

virus leads to consistent increases in the specialization of famil-

iar host genotypes through the course of experimental evolution,

and that specialization can occur in multiple fitness components.

MCMC-based inference analysis of time series data shows that

this specialization is not driven by a few mutations of large ef-

fect (Schraiber et al. 2016). Combining these lines of evidence

suggests that a combination of genetic mechanisms is likely to

explain specialization in our system.

Methods
STUDY SYSTEM

Our study system is Plodia interpunctella (Hübner), the In-

dian meal moth, and the Plodia interpunctella granulosis virus

(PiGV). Plodia interpunctella is a pest that lives in grain stores

(Mohandass et al. 2007). During its five larval instar stages, it

develops within its food medium before pupating and emerging

into an adult moth. For this experiment, we use inbred lines

previously generated in Bartlett et al. (2018). These lines were

made by mating individual brother-sister pairs for more than 27

generations. At this point, inbred populations should represent

near-clonal populations of a single genotype that was randomly

selected from the genetically diverse founder population via

drift. Limited data suggest that these inbred lines had levels of

resistance similar to other selection lines in our lab (Bartlett et al.

2020), though it is possible that inbreeding could have affected

resistance quality. However, we would not expect this to alter our

characterizations of the dynamics of specialization since all our

specialization metrics are relative across equally inbred lines.

Plodia interpunctella granulosis virus (PiGV) is a dsDNA

baculovirus that is an obligate killer (Vail and Tebbets 1990). The

natural life cycle is as follows: a larvae ingests virions in the oc-

clusion body form, the virions shed their protein coats and infect

gut epithelial cells, the virions either pass through the gut to es-

tablish a successful infection or are cleared during molting (free-

ing the larvae to carry out the rest of their life history), the virus

begins to proliferate through the entire body of the larvae, and,

once at a critical mass, packages into the protein-coated occlu-

sion body form and kills its host (Rohrmann 2013). It can then be

transmitted to susceptible larvae when they cannibalize infected

cadavers and ingest occluded virus. Critically, the virus must kill

its host in order to transmit, and larvae can only pupate and be-

come adult moths if they were not successfully infected (Boots

and Begon 1993).

HOST SELECTION AND MAINTENANCE

We selected three inbred Plodia interpunctella populations with

similar overall levels of resistance for this experiment, as
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measured by a preliminary resistance assay of all twelve of the

inbred populations (Table S1). The chosen inbred populations

(Lines 2, 9, and 17) represent genotypes with similar medium

overall levels of resistance compared to the full set of poten-

tial inbred lines (Table S1). Populations of these genotypes were

maintained in the absence of the virus as in (Bartlett et al. 2020)

(See Supplemental Methods for details).

SETTING UP EXPERIMENTAL EVOLUTION

Virus evolution was initiated with a single genetically diverse

virus stock that we diluted to a passaging dose that would cause

high mortality (∼7.5×10ˆ8 occlusion bodies per mL). A 0.5mg

early third instar larvae eats <0.1mg of the solution (unpublished

data), corresponding to an exposure dose of <75,000 occlusion

bodies. This value is consistent with natural field doses of bac-

ulovirus, which tend to be very high (Eakin et al. 2015; Kennedy

and Dwyer 2018).

We counted the concentration of this passaging dose on a

Petroff-Hauser counting chamber with a darkfield microscope at

400x magnification. This dilution was combined with 2% sucrose

(ThermoFisher Scientific, U.S.A.) and 0.2% Coomassie Brilliant

Blue R-250 dye (ThermoFisher Scientific, U.S.A.). The sucrose

encourages the larvae to consume the virus solution and the dye

allows us to recognize larvae that have consumed half their body

length of virus solution and are therefore considered successfully

inoculated.

We set up three replicate evolving lines of virus on each

of the three inbred host genotypes (see Fig. S1 for passaging

scheme). For each virus line, we collected 100 third instar larvae

of the appropriate genotype in a petri dish and starved them under

a damp paper towel for 2 hours. We then syringed tiny droplets of

our virus-sucrose-dye solution onto the petri dish for the larvae to

orally ingest. After about an hour, we moved 50 successfully in-

oculated larvae into two 25-cell compartmentalized square Petri

dishes (ThermoFisher Scientific, U.S.A.) with standard food. The

grid plates were then transferred to a single incubator for 20 days.

SERIAL PASSAGE

After 20 days, we harvested virus from each virus line under ster-

ile conditions by collecting up to 10 virus killed cadavers per line

and transferring these to sterile 15 mL disposable tissue grinders

(ThermoFisher Scientific, U.S.A.). Infected larvae were recog-

nizable by their opaque, chalky, white coloration. We were not

able to collect 10 infected cadavers from all virus lines at all pas-

sages, so, when we could not find 10 infected cadavers, we col-

lected every infected cadaver that we could find (Table S2). To

extract virus from infected cadavers, we added 2mL of sterile DI

water to the tissue grinders and homogenized the solution until all

cadavers had been thoroughly crushed. We then transferred 1mL

of the supernatant to a sterile 1.5mL Eppendorf tube and cen-

trifuged the solution for 1 minute at 3000 rpm to remove larger

particulate matter from the supernatant. We transferred 600uL of

this solution to a sterile 1.5 mL Eppendorf and centrifuged this

for 3 minutes at 13,000 rpm to pellet the virus. We removed the

supernatant from the pellet and resuspended in 1mL sterile water.

After extracting the virus, we diluted the solution 10× and

added 600 µL of the dilution to a .65 micron filter spin column

(Millipore Sigma, USA) that we centrifuged at 13,000 rpm for

3 minutes to semi-purify the virus of possible bacterial and fun-

gal contaminants (for method details see Table S3). Importantly

for later comparisons, this purification method differed from the

sucrose gradient purification method used to generate the ances-

tral virus stock (Harrison et al. 2016) and may have resulted in

differences in infectivity per particle. We counted each of the

semi-purified virus solutions as above and diluted them to the

passaging dose concentration of ∼7.5 × 108 occlusion bodies per

mL in 2% sucrose and .2% dye to form our final passaging solu-

tions for each virus line. A portion of these virus dilutions were

then used to infect the next set of third instar larvae of the ap-

propriate genotype following the protocol above and the rest was

stored at −20C for assays and sequencing. Virus was serially pas-

saged for nine passages (Figure S1). The number of passages was

determined at the start of the experiment and was based on num-

bers standard for similar experiments (Zhan et al. 2002; Nidelet

and Kaltz 2007; Legros and Koella 2010; Kubinak et al. 2012).

ASSAYING

We assayed each virus line at multiple passages to track evolu-

tion over the course of the experiment (Figure S1). We assayed

the starting population of virus as well as virus harvested from

passages 1, 4, 6, and the final passage 9. For each assay, we in-

oculated all 3 host genotypes with all nine virus lines at both the

passaging dose and 10% of the passaging dose. We inoculated 25

larvae for each host genotype × virus line × dose combination

using the standard inoculation protocol above. Because of time

constraints, inoculations for each passage were conducted across

three days with one host genotype each day being inoculated with

all of the virus lines. By assaying all the virus populations from

each of the evolutionary histories on all of the host genotypes, we

were able to measure how the evolving virus line changed in fit-

ness on the familiar (the genotype that the virus evolved on) and

foreign (genotypes that the virus was unexposed to) host geno-

types.

After 20 days, we froze the grid plates and counted the num-

ber of infected and uninfected individuals in each grid. This pro-

portion infected is our viral ‘infectivity’ metric. We collected all

the infected larvae from each assay grid that had been inoculated

with the higher dose and froze them in a pooled sample per grid

plate. We extracted virus from these samples via tissue grinding

and the two centrifugation steps (without filtering) and counted
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the virus in a Petroff-Hauser counting chamber as above. From

these virus counts and the number of infected larvae, we were

able to determine how many occlusion bodies each virus line pro-

duced per infected cadaver on average when infecting each host

genotype at the high dose. This average number of occlusion bod-

ies per infected cadaver at the high dose is our viral ‘productivity’

metric.

Finally, we multiplied the average number of virions pro-

duced per infected cadaver by the proportion of larvae infected

to get a composite measure of fitness for each virus line on each

host genotype at the high dose. This is hereto after referred to as

‘fitness’.

SEQUENCING AND VARIANT CALLING

The ancestral virus population and virus populations for each line

at the four assayed time points (37 samples) were next prepared

for sequencing. First, extracted occlusion bodies were rinsed in

0.1% SDS and purified in a Percoll gradient as in (Gilbert et al.

2014). Occlusion bodies were then dissolved in 0.5M Na2CO3

and DNA was extracted with a QIAamp DNA kit. Library prepa-

ration and sequencing were conducted at the UC Berkeley QB3

center on non-amplified DNA. 150 bp paired-end libraries were

generated with Kapa Biosystems library preparation kits and

multiplexed to run on one lane of an Illumina MiSeq platform.

Reads were then de-multiplexed and aligned to the PiGV ref-

erence genome [GenBank: KX151395] using bowtie2 (Lang-

mead and Salzberg 2012; Harrison et al. 2016). The resulting

alignments for each sample had 99.99-100% genome coverage,

51–100 mean coverage depth, and 40.2-41 mean MapQ scores.

The ancestral population .bam file was then re-aligned to the

reference, indel and alignment quality scores were added (din-

del method), and variants were called (SNV and indel, minimum

coverage = 20, default parameters) using LoFreq (Version 2.1.5)

(Wilm et al. 2012) in usegalaxy.org (Afgan et al. 2018). LoFreq

filter was used to select variants above 0.5 frequency to create a

new consensus fafsa file using bcftools consensus (Version 1.10).

FastQ files from all samples were then realigned to this consen-

sus using bowtie2 (Version 2.4.2) and Samtools (Version 1.13)

(Li et al. 2009) and variants were called using LoFreq as above.

Variants were then filtered using LoFreq filter to select those

above 0.01 frequency. The Galaxy history can be viewed here:

https://usegalaxy.org/u/evisher/h/reviews2022final.

PHENOTYPIC ASSAY DATA ANALYSES

We analyzed all phenotypic assay data using a linear mixed mod-

eling approach in R (version 4.0.3) using packages ‘lme4’(Bates

et al. 2015) and ‘glmmTMB’ (Brooks et al. 2017) to build

models, ‘DHARMa’ (Hartig and Lohse 2021) to check residu-

als, ‘afex’ (Singmann et al. 2019) and ‘car’ (Fox and Weisberg

2019) to check model effects, ‘emmeans’ (Lenth 2019) to ex-

tract effects, and ‘tidyverse’ (Wickham et al. 2019) to manipulate

data. Our response variables were either fitness, infectivity, or

productivity of the virus line. Error structures for models were

determined by testing model residuals with ‘DHARMa’ and then

adjusting error structures to best normalize the residuals. We cor-

rected residual distributions by sequentially testing models with

observation level random effects (Harrison 2014), negative bino-

mial distributions, then zero-inflated negative binomial or quasi-

Poisson distributions as needed (See annotated R code).

The first part of our analysis looked at data from the end of

the evolution experiment (passage 9). We tested for an effect of

specialization by using a “self” factor that was either true (virus

was assayed on the same host genotype it was evolved on) or false

(virus was assayed on a host genotype it was not evolved on). We

included this as a fixed effect alongside “assay genotype” and

“evolution genotype” (the host genotype used for the assay and

that the virus was evolved on, respectively). In the case of the

‘infectivity’ data analysis, “dose” was also included as a fixed ef-

fect. Our random effects were “evolution genotype” and “virus

line,” with “virus line” nested under “evolution genotype” to ac-

count for our experimental structure. Our infectivity model used a

binomial error structure and our productivity and fitness models

used Poisson error structures with observation-level random ef-

fects. To see if there were differences in which fitness metrics the

“evolution genotypes” specialized on, we built “fitness,” “infec-

tivity,” and “productivity” models specified the same as above,

but with “self” only included as in interaction term with “evo-

lution genotype.” To see if there were differences in the ability

of each virus selection line to evolve any specialism, we fur-

ther analyzed the effect of “self” on fitness by including it as

an interaction effect with “virus line” in a model specified the

same as above, but with “virus line” replacing “evolution geno-

type” as a fixed effect and a negative binomial error structure. All

model tables are provided in the Supporting Information Model

Tables file and organized by test. For full model structure, see

Supporting Information Model Tables M1.1-M1.7.

We also analyzed our infectivity, productivity, and fitness

data across the whole experiment, including passages 1, 4, 6, and

9 to interrogate how specialization evolved with time. We did not

include passage 0 data in this analysis because of clear differ-

ences in passage 0 to 1 fitness (likely due to different virus stor-

age and extraction conditions) and differences in the underlying

data structure of passage 0 data compared to evolved passage data

(due to ancestral virus not yet being “split” into virus lines). We

used the same general approach as detailed above, where fixed ef-

fects were “assay genotype,” “evolution genotype,” “self,” “pas-

sage number,” and an interaction between “passage number” and

“self.” Our error structure included “evolution genotype,” “virus

line” and “passage number,” with “virus line” nested under “evo-

lution genotype” as above, and “passage number” nested under
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“virus line” to account for multiple generations acting as repeated

measures. Our infectivity model used a binomial error structure

with observation level random effects and our productivity and

fitness models used zero-inflated negative binomial error struc-

tures. For full model structure, see Supporting Information Model

Tables M2.1-2.3.

We further used a similar modeling approach to test for

correlations between virus fitness on familiar and foreign hosts

across the whole experiment by building a model for “fitness”

including the interacting fixed effects of “assay genotype” and

“passage number” and the same “passage number,” “virus line,”

“evolution genotype” nested error structure as above and then ex-

tracting the residuals for each measurement of fitness of each

virus line on each assay genotype. These residuals were used

to build a “fitness on familiar genotypes” and “average fitness

on foreign genotypes” dataset that we used to test whether “fit-

ness on familiar hosts” was predicted by “average fitness on for-

eign hosts” and whether this effect interacted with the “evolution

genotype.” We further used the same modeling approach to test

for a correlation between a virus line’s virion production and its

infectivity by including the proportion infected as an additional

fixed predictor in a separate model of viral productivity at the

highest dose. For full model structure, see Supporting Informa-

tion Model Tables M3.1-M3.5.

We used the “ggplot2” (Wickham 2009) and “patchwork”

(Pedersen 2020) packages to plot graphs of our results. See

Supporting Information for annotated code.

VARIANT ANALYSIS

Variant frequencies were analyzed to: (1) identify genetic re-

gions of variation in our population, (2) determine whether vari-

ant community composition was predicted by treatment, and (3)

identify signatures of positive selection across the time series.

To determine regions of variation, we plotted variant fre-

quencies against genome position, identified genome regions

with high genetic variation, and compared these genetic regions

to the annotated PiGV reference genome by hand to identify po-

tentially interesting nearby genes (Harrison et al. 2016). To de-

termine whether passage 9 variant community composition was

predicted by treatment, we made multidimensional scaling plots

in “vegan” using the “metaMDS” function with the ‘Canberra’

method, which deemphasizes zero values (Oksanen et al. 2020;

Middlebrook et al. 2021). We then used constrained ordination

analysis on Hellinger and Chi-square pre-transformed SNP fre-

quencies in ‘vegan’ and performed a Monte Carlo permutation

test to determine whether treatment significantly predicted SNP

frequency variance amongst the virus populations (Oksanen et al.

2020). See Supporting Information for annotated code.

Finally, to identify signatures of positive selection, we used

an MCMC-based inference procedure to infer the strength of se-

lection acting at variable positions in our genomic time series

data (Schraiber et al. 2016). This software estimates selection

coefficients given an observed frequency trajectory, accounting

for uncertainty in true allele frequencies due to binomial sam-

pling. While we knew the average virus population size within

a single individual at the end of infection, we did not know the

exact number of virus particles that were found in each infec-

tion. However, we can apply functions derived from another bac-

ulovirus and lepidoptera system in Kennedy and Dwyer (2018)

to estimate that infections are founded by about 37–42 virions as

third instar larvae ingest <0.1mg of virus solution (unpublished

data), corresponding to a likely exposure dose of ∼7500–750,000

occlusion bodies. Thus, we chose several possible demographic

models based upon a range of reasonable inoculums (from 35

to 200 viral particles) and a range of growth rates (including

“slow” and “fast” exponential processes with ∼1.2–5 fold growth

per generation) and calculated the harmonic mean of population

size and the number of generations needed to reach 1010 parti-

cles for each scenario (Harpak and Sella 2014). We then repeated

our estimates of selection strength using each of these effective

population sizes, which ranged from small to moderate (Ne =
92 to Ne = 2869). We call “significant” alleles using the most

conservative demographic model (Ne = 92) by a loose thresh-

old, where the 90% HPD interval did not overlap 0 (Figure S5).

For details, see Supporting Information methods and annotated

code.

Results
SPECIALIZATION OF VIRUSES AT THE FINAL

PASSAGE

After nine passages of experimental evolution, we find good ev-

idence that viruses evolved to specialize on their familiar host

genotype, indicated by a significantly positive effect of “self” on

viral infectivity (estimate = 0.33, p = 0.014, Fig. 1a and d, M1.1),

productivity (estimate = 0.76, p = 0.016, Fig. 1b and e, M1.2),

and fitness (estimate = 0.91, p = 0.01, Fig. 1c and f, M1.3;

See Fig. 1, Supporting Information Model Tables M1.1-M1.3).

Therefore, the evolved virus lines infected relatively higher pro-

portions of individuals, produced more virions per infection,

and therefore had higher fitness when infecting the host geno-

type that they had evolved on than when infecting foreign host

genotypes.

We found a significant effect of “dose” (p < 0.001, M1.1)

for infectivity, as expected, and a significant effect of “as-

say genotype” (host) for infectivity (p < 0.001, M1.1) but not

productivity (M1.2) or fitness (M1.3). We did not find signif-

icant effects of “evolution genotype” on any of our three met-

rics (M1.1–M1.3), meaning that specific host genotypes did not

lead to the evolution of generally more infectious or higher
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(a) (b) (c)

(d) (e) (f)

Figure 1. Specialization of virus at the end of the experiment. Paneled plots show the effect of the virus’s evolutionary history on its

(a,d) infectivity, (b,e) productivity, and (c,f) composite fitness when infecting each of the assay lines. Panels on plots (a–c) are organized

by the assay genotype as assays were conducted on different days. Panels on plots (d–f) are organized by the evolution genotype, as this

better matches our question of how virus lines evolved to specialize on their familiar host. Productivity metrics were only collected at

the high dose. Fitness is the proportion infected at the high dose x the average number of virions produced per infected cadaver. Panels

(a–c) present raw data while panels (d–f) present effect size estimates and errors from the GLMM models.

fitness virus populations when averaged across all three assay

genotypes.

Next, we asked whether different evolution treatments led

to differences in the specialization of different fitness metrics.

In our fitness model, we do see a significant interaction be-

tween “evolution genotype” and ‘self’ (p = 0.03, M1.5) driven

by higher specialization of lines evolved on host genotype 17.

We do not find a significant interaction in our infectivity models

(p = 0.104, M1.6). We do see a significant (p = 0.017, M1.7)

interaction in our productivity model, however, driven by higher

productivity specialization of lines evolved on host genotype 17

(fitness: estimate = 1.91, p = 0.002). Finally, we test whether

virus lines differ in their fitness and find that they have significant

fitness differences (p = 0.012) and interaction effects with “self”

(p = 0.0028). See Supporting Information Model Tables M1.1-

1.7 for full models and results.

EVOLUTION OF SPECIALIZATION OVER TIME

Our analysis of fitness data across all evolved passages (1, 4, 6,

and 9) showed significant effects of passage number (p = 0.001),

evolution genotype (p = 0.0006), and assay genotype (0.035)

on virus fitness (Fig. 2; Fig. S2, M2.1). Virus lines had signifi-

cantly (p = 0.025) lower fitness when assayed on host genotype

17, while virus lines evolved on host genotype 17 were signif-

icantly more fit (p = 0.034; M2.1). There is a significant ef-

fect of passage number on virus fitness (p = 0.001), with virus

lines generally increasing in their total fitness from passage 1 to

passage 4 and no further meaningful change from passage 6 to 9
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(a)

(b) (c)

Figure 2. Evolution of specialization over time. Paneled plot showing (a) raw data of each virus line’s fitness on each assay line across

the experiment, (b) the statistical effect of passage on total fitness across hosts, and (c) the statistical effect of whether the virus was

assayed on its familiar host genotype (red) or on a foreign one (blue) on viral fitness over time. Y-axis effect sizes and errors for (b) and

(c) are taken from the GLMM models using the “emmeans” package.

(Pass4-1: estimate = 0.69, p = 0.04; Pass6-4: estimate = 0.2,

p = 1.0; Pass9-6: estimate = −0.16, p = 1.0) (Fig. 2b, Fig.

S2B, M2.1). There is not a significant interaction between the

effect of infecting a familiar host and passage number (p = 0.16),

and viruses only become significantly specialized at passage 9

(FALSE-TRUE: estimate = −0.68, p = 0.03; Fig. 2c, M2.1).

This is because fitness on foreign hosts inconsistently changes

(Pass4-1: estimate = 1.07, p = 0.005; Pass 6-4: estimate = 0.11,

p = 1.0; Pass 9-6: estimate = −0.5, p = 0.15), even though fit-

ness on familiar hosts has nonsignificant, consistent increases

(Pass4-1: estimate = 0.31, p = 1.0; Pass 6-4: estimate = 0.29,

p = 1.0; Pass 9-6: estimate = 0.19, p = 1.0; Fig. 2c).

CORRELATION BETWEEN FITNESS ON FAMILIAR AND

FOREIGN HOSTS

We next determined the correlation between a virus line’s fitness

on their familiar host genotype and on the foreign host genotypes.

A negative correlation would mean that the virus lines with the

highest fitness on their familiar genotype had the lowest fitness

on foreign genotypes and indicate a strict trade-off. Across the

passage 1–9 dataset, we find that there is not a generally signif-

icant correlation between fitness on familiar and foreign hosts

(p = 0.13, M3.1), nor does this relationship significantly change

over time (p = 0.738; Fig. S3, M3.3). However, there is a

significant interaction effect between the genotype that the lin-

eage evolved on and the relationship between fitness on familiar

and foreign hosts (p = 0.001, M3.1). Specifically, the relationship

between fitness on familiar and foreign hosts is negative for lines

evolved on genotype 17, positive for lines evolved on genotype

2 (p = 0.002), and not significant for lines evolved on genotype

9 (p = 0.16; Fig. 3, M3.1).

RELATIONSHIP BETWEEN VIRUS PRODUCTIVITY AND

INFECTIVITY

When we examine the passage 9 dataset, we find that the rela-

tionship between virus productivity and infectivity significantly

(p = 0.007, M3.5) interacts with whether the virus is infecting

familiar or foreign hosts so that the relationship is negative when

lines are assayed on their familiar genotype and positive when

they are assayed on foreign. However, when we analyzed the full

dataset with all passages, we do not find a significant three-way

interaction between the effects of virus infectivity, virus produc-

tivity, and being assayed on the familiar genotype. Therefore, we

fit and tested a model with an interaction effect between “self,”

“productivity,” and “passage number” (M3.4). We do not find

a generally significant interaction between these three metrics

(p = 0.067, M3.4), but do find that the interaction between in-

fecting a familiar host and proportion infected becomes signifi-

cantly negative at passage number 9 (p = 0.01, M3.4) after being

generally positive across the rest of the passages. This effect is

mostly driven by the evolution genotype 17 lines, which have

significantly higher specialization in productivity. Therefore,
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Figure 3. Correlation Between Fitness on Familiar and Foreign Hosts. Plot showing the correlation between each virus line’s fitness on

familiar and foreign hosts at passages 1, 4, 6, and 9. Effect sizes are taken from the GLMM models.

Figure 4. Relationship between Virus productivity and infectivity. Paneled plot showing the relationship between viral productivity and

infectivity on both familiar (left panel) and foreign hosts (right panel) at each passage.

the direction of the relationship between viral productivity and

infectivity changes from positive to negative depending on the

passage number and whether the virus is infecting a familiar or

foreign host (see Fig. 4). This indicates that productivity and

infectivity are not strictly positively correlated traits and that spe-

cialism can evolve independently in either trait.

GENETIC VARIATION

Most variants are at low (<10%) frequencies, but there are

several genomic regions that consistently have a high genetic

variation (Fig. S10). These regions correspond with several ORFs

homologous with genes in AcMNPV that have known functions

including occluded virus production, oral infection, time to kill,
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Figure 5. (A) Genome-wide selection inferences for SNP and indel variants in each replicate. Significant variants (positive and negative)

are colored by the replicate that they are detected in, and non-significant variants are light gray. Circle points represent SNPs and tri-

angles represent Indels. See Figures S6–S8 for expanded versions of this figure. (B) Multidimensional scaling plots for passage 9 variant

communities. Variant communities are transformed using the “canberra” method and plotted using “vegan.” See Fig. S4 for “rare” and

“common” variant NMDS plots.

and host range (Table S4) (Harrison et al. 2016; Rohrmann 2019).

We do not find that treatment significantly predicts variance in

variant community composition at passage 9 in constrained ordi-

nation analyses with permutation tests (23% variance explained,

p = 0.69), indicating that evolution genotype is not significantly

predicting the frequencies of genetic variants (Fig. 5; Fig. S4).

Among the 18 alleles that were called as significant in the

analysis of the Ne = 92 model (Fig. 5), we found three that were

called as significant in two or more biological replicates from

the same treatment (Table S5). Some putatively selected variants

were shared across virus populations from two or more of the in-

bred lines, suggesting they may represent generalist adaptation

to experimental conditions rather than adaptation to specific host

genotypes (Fig. 5a; Figs. S6–S8). In general, we note that the

inferred selection coefficients are mostly indicative of weak pos-

itive selection. If we suppose an effective population size of 92

(as in the demographic model we used for the selection infer-

ence), then the inferred values of 2Ns indicate per-allele effects

ranging from 0.014 to 0.23.

Discussion
Specialization is critical to many of our theories of coevolution

and the maintenance of diversity (Futuyma and Moreno 1988). In

particular, specialization between parasites and their hosts is cru-

cial for understanding patterns of disease emergence and spread

(Woolhouse and Gowtage-Sequeria 2005). Here, we use exper-

imental evolution techniques to test whether a granulosis virus

can evolve to specialize on specific genotypes of its moth host.

We find that the virus evolved to specialize in infectivity, produc-

tivity, and fitness on familiar host genotypes (Fig. 1).

A unique feature of our experiment is that we collect time

series phenotypic and genetic data that allow us to explore the

dynamics of specialization in novel ways. First, a key find-

ing of our experiment is that the virus can evolve both higher

viral infectivity and productivity on familiar host genotypes, thus

specializing (Fig. 1). Several previous similar studies have also

measured multiple fitness components related to specialization

to find that pathogens could variably specialize on parasite vir-

ulence and/or transmission (Zhan et al. 2002; Nidelet and Kaltz

2007; Legros and Koella 2010; Kubinak et al. 2012). Kubinak

et al. (2012) found that Friend complex virus evolved both higher

viral productivity and virulence on familiar host genotypes and

Zhan et al. (2002) found that fungal strains could specialize in

both virulence and frequency, though this effect was inconsistent

depending on the pathogen strain considered. However, Legros

and Koella (2010) found that microsporidia specialized in infec-

tivity, but not productivity, while Nidelet and Kaltz (2007) found

that parasites specialized in growth assays, but not horizontal

transmission. However, none of these previous studies have ex-

amined the correlations between their fitness components across

time.

With our phenotypic time series data, we can see that the re-

lationship between our two fitness components (infectivity and

productivity) is positive at the start of the experiment but, by

passage 9, evolves to be negative when infecting familiar hosts

(Fig. 4). This correlation is likely to be an emergent property

of selection where different virus lines are primarily selected to

increase specialization by improving either viral productivity or

viral infectivity, rather than an actual genetic trade-off between

these traits. The likelihood of specializing on different fitness

metrics may be related to evolution background as virus lines
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evolved on host genotype 17 seem to be more specialized in their

productivity at passage 9, while virus lines evolved on host geno-

type 2 seem to be more specialized in their infectivity at passage

9 (Fig. 1). This finding highlights the importance of measuring

multiple fitness components when pathogen populations can use

many strategies to increase their fitness.

Next, we can ask questions about the number of potential

genes involved in specialism evolution. If specialization were to

be driven by a few mutations of large effect, we would expect to

see some degree of genetic parallelism in replicates and strong

signatures of selection (if specialization is not driven by mutation

accumulation). If there were many genetic options for special-

ization, we would not necessarily expect to see the phenotypic

parallelism of the experiment reflected at the genetic level and

selection on any one variant would be weaker.

In our experiment, the evidence indicates that specializa-

tion was driven by many variants of small effect (Fig. 5). We

did not observe any clear signals of selective sweeps where low-

frequency alleles swept to high frequency. Given the relatively

high depth of coverage of our samples and the quality of the se-

quencing data, it is unlikely that we failed to detect many (if any)

sweeps. Furthermore, our selection analysis does not identify any

variants with strong parallel signatures of selection across repli-

cates (Fig. 5). These results are likely influenced by the facts that

our starting population is genetically diverse, so our experiment

is more likely to select on standing variation (Long et al. 2015),

and that we serially passage through hosts, so transmission bot-

tlenecks likely genetically bottleneck our lineages (Kennedy and

Dwyer 2018). It is also possible that selection for specialization

may have been obscured by the initial selection for generally im-

proved fitness in experimental conditions, though we did not see

strong, parallel signatures of selection for either general or spe-

cialist fitness.

Our results finding many candidate genes with lower selec-

tion coefficients are generally in line with previous evolve and

re-sequence experiments that start with standing genetic varia-

tion and less-specific environmental stressors, though clonal in-

terference may have been less prominent in our experiment due to

the relatively smaller bottleneck sizes in vivo infection processes

(Miller et al. 2011; Tenaillon et al. 2012; Lang et al. 2013; Long

et al. 2015; Schlötterer et al. 2015). In the context of virus adap-

tation to host genotype, Middlebrook et al. (2021) also do not see

parallel genetic evolution when FVC virus specializes on mice

with different MHC genotypes from a clonal starting population,

although they did see evidence that virus populations adapted to

each MHC genotype are more similar to each other than to those

adapted to foreign MHC types.

Second, we can ask questions about whether specialization

is driven by antagonistic pleiotropy, conditionally positive adap-

tation resulting in fitness asymmetries, or mutation accumulation

in alternate environments. If specialization were to be driven by

antagonistic pleiotropy, we would expect to see that the most fit

replicates on the familiar host are the least fit on the foreign host

and that positive selection acts on variants. We would not have

clear predictions for how total fitness across all the genotypes

would change over time as this would depend on the symmetry

of the trade-off shape. In the case of conditionally positive alle-

les resulting in fitness asymmetries between familiar and foreign

hosts, we would expect to see slightly positive or neutral fitness

correlations between familiar and foreign hosts, positive selec-

tion on variants, and overall increases in total fitness across all

the genotypes. In the case of mutation accumulation, we would

expect negative fitness correlations between familiar and foreign

hosts (the most specialized are those that are worst on foreign

hosts), no evidence of positive selection since MA is driven by

drift, and overall decreases in total fitness across all the geno-

types.

Of course, these mechanisms are not exclusionary, espe-

cially in our case where many variants can affect specialization.

These predictions may therefore be muddied if multiple mech-

anisms are driving specialization. Additionally, any directional

fitness changes to overall experimental conditions might hamper

our ability to fully assess whether fitness correlations between

genotypes are positive or negative (as some replicates may just be

the “most adapted” to the general environment) and our ability to

assess changes in total fitness across genotypes in the system.

We find that correlations between fitness on familiar and

foreign hosts significantly vary depending on the evolutionary

history of the virus (Fig. 3). There is a negative correlation be-

tween fitness on host genotype 17 and foreign genotypes, sug-

gesting that specialization on this host could be consistent with

any mechanism. However, correlations between fitness on famil-

iar and foreign host genotypes are positive for virus specializing

on host genotypes 2 and not significant for virus specializing on

host genotype 9. This suggests specialization driven by asym-

metric conditional positivity. Therefore, it is likely that multiple

mechanisms contribute to specialization in our system.

From our sequence analysis, we do not see evidence of

strong, parallel positive selection on any variants. We observe

many instances of subtle frequency differentiation during the

course of the experiment, which seems a likely candidate to

explain the genetic mechanism for adaptation (Fig. 5; Figures

S6–S8). Thus, the sequencing data cannot help to exclude

potential specialization mechanisms as it is unclear whether

these weakly positively selected alleles collectively have strong

enough effects to explain phenotypic specialization (as would be

predicted by positive selection on antagonistically pleiotropic or

conditionally positive alleles) or whether additional drift-based

mutation accumulation processes are also needed to explain the

specialization in our system.
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Finally, the total fitness of virus lineages across all host

genotypes does not increase continuously though the experiment

(Fig. 2). Total fitness does increases from passage 1 to passage

4 but plateaus from passage 6 to passage 9, which is also when

we see our largest changes in specialization. This would suggest

that antagonistic pleiotropy or a balance of conditional positiv-

ity and mutation accumulation is driving specialization. It also

suggests that PiGV quickly reached a point of being fairly well

adapted to experimental conditions so that directional selection to

overall experimental conditions is less likely to obscure patterns

resulting from specialization. However, a caveat to these trends

in total fitness is that our assay scheme was designed to best test

the changes in relative fitness on different genotypes over time

and so assayed viruses from different passages on different days.

Therefore, these trends in total fitness (but not relative fitness)

might be confounded by random day effects.

In this experiment, we have shown that Plodia interpunctella

granulosis virus can evolve to specialize on specific genotypes of

its host and that specialization is not driven by strong selection on

a few alleles. However, we cannot precisely determine the evolu-

tionary mechanism of this specialization. Putting our evidence

together, it seems most likely that the evolution of specialization

in our experiment is driven by many genetic variants and by mul-

tiple mechanisms. For lines evolved on host genotype 17, which

also showed the most specialization via viral productivity, spe-

cialization may be most parsimoniously explained by antagonis-

tic pleiotropy as this would explain their negative fitness correla-

tions with overall stable fitness. For lines evolved on genotypes

2 and 9, specialization may be most parsimoniously explained by

a combination of weakly positive fitness asymmetries and muta-

tion accumulation in alternate environments as these mechanisms

could have collectively driven specialization while their opposing

effects on total fitness would result in no total fitness changes.

The weak signatures of selection and lack of genetic parallelism

in our sequence analysis would fit with these hypotheses if antag-

onistic pleiotropy and conditionally positive fitness asymmetries

are driven by many variants of small effect.

Of course, the findings of our experiment may be limited in

their universality as the Plodia intepunctella and PiGV system is

but one model system with unique biological features like obli-

gate killing and, while our serial passaging protocol closely mim-

ics the natural transmission pathway of oral ingestion of virus

killed cadavers, it is not exactly natural transmission in that we

homogenize cadavers and transmission is constrained to happen

on a certain day after exposure (day 20), to a specific larval in-

star (third), and at a specific dose. Thus, further studies on this

topic in different model systems will only help to strengthen our

understandings of the dynamics of specialization.

In conclusion, we used an experimental evolution approach

to determine whether a baculovirus could evolve to specialize in

specific genotypes of its moth host. We find that virus does evolve

higher infectivity, productivity, and fitness on familiar host geno-

types (Fig. 1). This specialization may be variably driven by com-

binations of antagonistic pleiotropy, conditionally positive alle-

les leading to fitness asymmetries, and mutational accumulation

on foreign host genotypes in our different evolutionary condi-

tions. Time series data show that specialization in fitness evolves

over the time course of the experiment and that the different fit-

ness components of virus lineages may be independently selected

(Figs. 2 and 4; Fig. S2). Our results demonstrate that gene-by-

gene interactions are evolvable in the Plodia interpunctella and

PiGV model system and suggest that the system has promise for

experiments on the ecological conditions that shape selection on

specialization and niche breadth.
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